Surface Integrity analysis in Wire-Cut Electric Discharge Machining of AI 6063/AI2O3 Metal Matrix Composite through Response Surface Methodology

K.Hemalatha¹, V.S.K.Venkatachalapathy² N.Alagumurthy³

Abstract— The development of new, superior engineering materials and the need for precise and low-volume production have made the wire electrical discharge machining (EDM) an important manufacturing process to meet such demands. This research investigates the effect of pulse on-time, pulse off-time and servo feed, three important WEDM process in obtaining good surface finish, optimized material removal rate and kerf on newly formulated Aluminum $6063/AI_2O_3$ composite. Stir casting process is adopted for casting the composite plates with varying mass percentage of alumina (3%, 6%, 9%). The distribution of alumina and aluminium is examined by microstructure analysis, and the material is tested for its mechanical properties such as tensile strength and hardness. The effects of the parameters on the responses were evaluated by response surface methodology, which is based on optimization results. On the basis of optimization results it has been found that a pulse duration (Ton) of 3μ s & pulse off time (Toff) 17μ s and servo feed 7mm/min, which are the best combination of this analysis.

Index Terms— Surface integrity, Aluminum-Alumina composite, Stir casting process, wire electrical discharge machining, pulse on-time, pulse off-time, servo speed, weight percentage of alumina, response surface methodology, kerf, surface roughness

_____ ****

1 INTRODUCTION

The development of new, superior engineered materials and the necessitate for light weight, high stiffness, good wear resistance and low thermal expansion coefficient lead to the development of Al/ Al₂O₃ Metal Matrix Composite. Its main function is to transmit and distribute the load to the reinforcement or fibers. This transfer of load depends on the bonding which depends on the type of matrix and reinforcement and the fabrication technique.[1,2] . Nowadays researchers all over the world are focusing mainly on Aluminium be-

cause of its unique combination of good corrosion resistance, low density and excellent mechanical properties. The unique thermal properties of Aluminium composites such as metallic conductivity with coefficient of expansion that can be tailored down to zero, add to their prospects in aerospace and avionics. [3, 4].

Also, the practice of hard and difficult to machine materials, due to its brilliant technological properties, is extensively used in various sectors in modern manufacturing industries. Owing to, its excellent properties and behavior in these applications even more challenging, its transformation and processing they present problems which limit the accuracy and rising production costs. Consequently, the machining of

• Dr.N.Alagumurthi, Professor, Department of Mechanical Engineering, Pondicherry Engineering College, Puducherry, India

such material in an efficient manner is a challenge.

Wire-Cut Electro Discharge Machining (EDM) is a brilliant solution to this problem, It is generally used to machine difficult-to-machine materials, high strength, temperature resistant alloys and manufacturing of tools and dies for machining cavitities and counter shaping and cutting.[5]

2 MATERIALS AND METHODS

The material used in the present investigation consists of Aluminium alloy (Al6063) as the base matrix alloy. Its Chemical composition (%) is Mg = 0.45-0.9, Si=0.2-0.6, Fe=0.35max, Cu=0.1max, Mn=0.1max, Zn=0.1max, Ti=0.1max, Cr=0.1max, Al=balance. It posses high heat dissipation capacity and is suitable for high strength and high temperature applications. The aluminium matrix was reinforced with Al₂O₃ of 46 microns in varying percentage of 3%, 6% and 9%.

Typical Stir casting Process includes:

Step1: Aluminium alloy is melted at 800°C in muffle furnace for two hours

Step2:Alumina is melted at 100° C in another muffle furnace for same time period

Step3:Melted Aluminium & Alumina are mixed in the graphite crucible and 5gm of coverall, nucleant & degasser are added in the melt

Step4:After adding all these, the crucible is kept inside the furnace

Step5:The molten metal are stirred at speed of 200rpm for 10minutes

Step6:At the same time, dies are preheated at 300° C in another muffle furnace for 2 hours

▶

•

K.Hemalatha currently pursuing Ph.D degree program in Mechanical engineering in Pondicherry Engineering College, India, E-mail: hemalatharohit@gmail.com

Dr.V.S.K.Vemkatachalapathy, Professor, Department of Mechanical Engineering, Sri Manakula Vinayagar Engineering College, Puducherry, India, Email:vskvenkatachalapathy@yahoo.com

Step7:Finally the molten metal poured into the preheated die and then the metal is allowed to solidify

3 TESTING AND RESULTS

For the safe design and usage of these composite plates, it is essential that their ultimate strength and mechanical properties need to be determined. Hence various tests are conducted using the fabricated plates.

3.1 Tensile Test

The important properties which come into play when a component is subjected to tensile loads are strength, Elasticity & Ductility. The graph below explains detail about the above parameters. From the cast MMC the standard tensile specimen were prepared by machining as per dimensions of ASTM E8. To obtain mechanical properties, specimens with overall length 100mm, thickness of 6mm and a gauge length of 25mm were tested in UNITEX-94100 Universal Testing machine.

3.2 Micro Hardness

Hardness is often a function of the particle size, porosity, and binder material. Hardness is very important to the success of machining operations. The hardness of the samples was measured using UHL Vickers micro hardness measuring machine by applying a load of 0.5Kg and this load was applied

TABLE 1 Hardness Value						
Consula		H.V @ 0.5 Kg Load				
Sample	Location				Avg	
A16063+3% A1 ₂ O ₃	55.8	52.1	53.4	53.8	53.775	
A16063+6% A12O3	55.4	55.1	55.5	54.9	55.225	
A16063+9% A12O3	63.8	62.8	61.4	62.7	62.675	

for 20 seconds. In order to eliminate the possibility of error a minimum of four hardness readings were taken for each sample.

3.3 Microstructure Analysis

Microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25× magnification. The microstructure of a material (which can be broadly classified into metallic, polymeric, ceramic and composite) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behavior, wear resistance, and so on, which in turn govern the application of these materials in industrial practice.

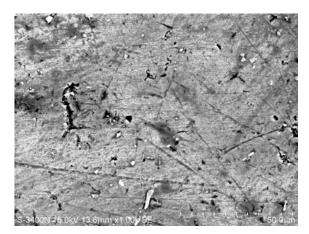


Fig.1. SEM Image of Al6063+9% Al₂O₃

ER

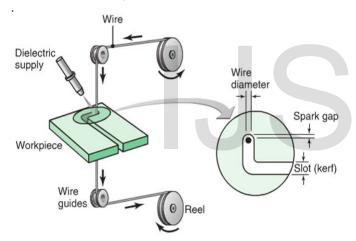
Fig.2. SEM Image of Al6063+6% Al₂O₃

Fig.3. SEM Image of Al6063+3% Al_2O_3

The above SEM images shows creation of grain boundaries the structures show loosely formed grains with Unmodified Vermicular. Silicon segregation in arranged manner of dendrites leading to a "shrinkage prone site". This happen

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 ISSN 2229-5518

due to poor grain refinement as well as poor modification. Thus the casting has all the following defects like shrinkage, gas holes & inclusions. Similar results are reported by [6,7].


4 WIRE EDM

Wire EDM (Electrical Discharge Machining) uses electric current and fine wire to cut conductive materials. The cutting typically occurs while the object is submerged in de-ionized water, which helps to cool the process and flush away the cut material. It leaves a smooth surface that often requires no further finishing or polishing. Noted that the cutting wire should not touch the material and that the cutting itself is due to the erosion that occurs when a spark forms between the cutting wire and the raw material.

Fundamental WEDM Settings:

The pulse on-time, pulse off-time, servo feed are the basic machine settings.

Other Initial settings include: Wire diameter: 0.25mm Wire tension: 0-26 A Fluid resistivity: 5x10⁴ Ohm-cm Fluid Pressure: 12Kg/Cm²

5 RESPONSE SURFACE METHODOLOGY

It is multi-response parametric optimization tool which is

Sl. No.	Process Parame- ter	Level 1	Level 2	Level 3
1	Pulse on-time(µs)	3	6	9
2	Pulse off-time(µs)	11	14	17
3	Servo feed set- tings (mm/min)	5	7	9

TABLE 2 THE VALUES AND LEVELS OF THE PROCESS PARAMETERS

used to determine the factor levels that will concurrently suit a

TABLE 3 DESIGN MATRIX AND EXPERIMENTAL RESULT FOR 3% ALUMINA

	INPUT	PARAM	ETER	R	ESPONS	E		
R u n	Fac- tor 1 P-ON (µS)	Fac- tor2 P- OFF (µS)	Factor3 Servo Feed (mm/ min)	Re- sponse 1 SR (µm)	Re- spons e2 Kerf (µm)	Re- spons e3 MRR (mm²/ min)		
1	6	11	5	2.6	287	39.9		
2	6	17	9	2.2	291	40		
3	6	14	7	2.88	289	38.956		
4	6	14	7	2.7	287	39		
5	6	14	7	2.7	290	38		
6	6	17	5	2.45	290	38		
7	9	14	5	3	288	35		
8	6	11	9	3.5	292	36		
9	3	11	7	2.4	284	40		
10	9	11	7	3.3	299	37		
11	3	14	9	2.22	282.5	41.89		
12	3	14	5	2.11	282	42		
13	9	17	7	3	296	38		
14	3	17	7	2.1	280	43.8		
15	9	14	9	2.9	298	35		

TABLE 4 Annova Table for the fitted model: (Kerf Values)

SOURCE	DOF	SUM OF Squares	Mean Square	F- ratio	P- Value
Model	3	381.69	127.23	20.12	0.0001
A-Pulse on-time	1	344.53	344.53	54.49	0.0001
B-Pulse Off- TIME	1	3.13	3.13	0.49	0.4966
C-Servo feed	1	34.03	34.03	5.38	0.0406

set of desired Specifications and to resolve the optimum combination of factors that yields a preferred response and describe the response near the optimum.

TABLE 6 ANNOVA TABLE FOR THE FITTED MODELS: (SURFACE ROUGHNESS)

Source	Degrees of freedom	Sum of Squares	Mean Square	F-ratio	P- Value
Model	3	2.00	0.67	12.40	0.0007
A- Pulse on-time	1	1.42	1.42	26.42	0.0003
B- Pulse off-time	1	0.53	0.53	9.78	0.0096
C- Servo feed	1	0.054	0.054	1.01	0.3358

 TABLE 7

 R-Squared Values (Surface Roughness Values)

Std. Dev.	0.23	R-Squared	0.7718
Mean	2.67	Adj R-Squared	0.7096
C.V. %	8.68	Pred R-Squared	0.5288
PRESS	1.22	Adeq Precision	11.319

TA	BLE 8	
ANNOVA TABLE FOR	R THE FITTED	MODELS
(Material	REMOVAL RA	ATE)

Source	Degrees of freedom	Sum of Squares	Mean Square	F- ratio	P- Value
Model	3	70.81	23.60	12.99	0.0006
A- Pulse on-time	1	64.35	64.35	35.41	0.0001
B- Pulse off-time	1	5.95	5.95	3.27	0.0977
C- Servo feed	1	0.51	0.51	0.28	0.6086

TABLE 9 R-Squared Values (Material Removal Rate)

Std. Dev.	1.35	R-Squared	0.7798
Mean	38.84	Adj R-Squared	0.7198
C.V. %	3.47	Pred R-Squared	0.5366
PRESS	42.08	Adeq Precision	10.626

 TABLE 10

 DESIGN MATRIX AND EXPERIMENTAL RESULT FOR 6% ALUMINA

INPUT PARMETER				R	ESPONS	E
Run	Factor 1 P-ON (µS)	Factor2 P-OFF (µS)	Factor3 Servo Feed (mm/ min)	Response1 SR (µm)	Response2 Kerf (µm)	Response3 MRR Mm ² /min
1	6	11	5	2.8	284	43
2	6	17	9	2.75	283.59	45
3	6	14	7	3	286	44
4	6	14	7	2.65	283	43
5	6	14	7	2.689	282.33	43
6	6	17	5	2.38	280	45.5
7	9	14	5	2.9	285	42
8	6	11	9	3.2	286.5	42.125
9	3	11	7	2.6	281.65	45.75
10	9	11	7	3.1	287	42
11	3	14	9	2.5	281	46
12	3	14	5	2.3	279.2	46.25
13	9	17	7	2.9	284.1	46
14	3	17	7	1.98	278	47
15	9	14	9	3.1	286.95	41

 TABLE 5

 R-Squared Values (Kerf Values)

Std. Dev. 2.51		R-Squared	0.8459
Mean	289.03	Adj R-Squared	0.8038
C.V. %	0.87	Pred R-Squared	0.6811
PRESS	143.90	Adeq Precision	13.28

TABLE 12 R-Squared Values (Kerf Values)

STD. DEV.	1.02	R-SQUARED	0.8983
MEAN	283.22	Adj R-Squared	0.8705
C.V. %	0.36	Pred R-Squared	0.8589
PRESS	16.03	Adeq Precision	17.315

 TABLE 13

 ANNOVA TABLE FOR THE FITTED MODELS:

 (SURFACE ROUGHNESS)

Source	DEGREES OF FREEDOM	SUM OF SQUARES	MEAN Square	F-RATIO	P-VALUE
Model	3	1.39	0.46	26.52	0.0001
A- Pulse on-time	1	0.86	0.86	49.26	0.0001
B- Pulse OFF- TIME	1	0.36	0.36	20.49	0.0009
C- Servo FEED	1	0.17	0.17	9.82	0.0095

		TABLE 14	
R-SQUARED	VALUES	(SURFACE ROUGHNESS	VALUES)

STD. DEV.	0.13	R-Squared	0.8785
MEAN	2.72	Adj R-Squared	0.8454
C.V. %	4.85	Pred R-Squared	0.7922
PRESS	0.33	ADEQ PRECISION	15.809

 TABLE 15

 ANNOVA TABLE FOR THE FITTED MODELS: (MATERIAL RE-MOVAL RATE)

	MOVAL RATE)							
Source	DEGREES OF FREEDOM	Sum of Squares	Mean Square	F-ratio	P-VALUE			
Model	3	39.47	13.16	11.82	0.0009			
A-Pulse ON-TIME	1	24.50	24.50	22.01	0.0007			
B-Pulse OFF- TIME	1	14.11	14.11	12.68	0.0045			
C- Servo FEED	1	0.86	0.86	0.77	0.3978			

TABLE 16 R-Squared Values (Material Removal Rate)

		1					
STD. DE	v.		1.05		R-SQUARED		0.7633
MEAN		4	4.11	А	DJ R-S QUA	RED	0.6987
C.V. %	Ď	2	2.39 _		RED R-SQU	ARED	0.5405
ANNOVA PRES	Тав	LE F 2	ов тні 3.76		ED MODEL: (DEQ PRECIS	KERF V	LUES) 11.301
SOURCE	DC)F	SUM SQUA		Mean Square	F- RATIO	P- Value
Model	3	5	102	.03	34.01	32.38	0.0001
A- Pulse on-time	1		67.	28	67.28	64.06	0.0001
B- Pulse OFF- TIME	1		22.	63	22.63	21.55	0.0007
C- Servo FEED	1		12.	12	12.12	11.54	0.0060

	INPUT PARMETER			F	RESPONS	E	
Run	Factor 1 P-ON(μS)	FACTOR2 P-OFF (µS)	Factor3 Servo Feed (MM/ MIN)	Response1 SR (µM)	Response2 Kerf (µm)	Response3 MRR Mm ² /MIN	
1	6	11	5	2.53	275	49	
2	6	17	9	2.178	271	49.8	
3	6	14	7	2.765	273	47.9	
4	6	14	7	2.6	272.525	48	
5	6	14	7	2.612	272	47	
6	6	17	5	2.38	270.75	46.25	
7	9	14	5	2.91	275	42.75	
8	6	11	9	3.3	281	45	
9	3	11	7	2.375	273	50	
10	9	11	7	3.31	280	44.75	
11	3	14	9	2.1	272	50.25	
12	3	14	5	2.0	289	51	
13	9	17	7	2.8	270	43	
14	3	17	7	1.57	268	52	
15	9	14	9	2.75	272	40	

TABLE 17 DESIGN MATRIX AND EXPERIMENTAL RESULT FOR 9% ALU-MINA

TABLE 19 R-Squared Values (Kerf Values)

STD. DEV.	1.98	R-Squared	0.7763
MEAN	272.95	Adj R-Squared	0.6993
C.V. %	0.73	Pred R-Squared	0.4999
PRESS	91.65	ADEQ PRECISION	10.797

TABLE 18 ANNOVA TABLE FOR THE FITTED MODEL: (KERF VALUES)

Source	DOF	Sum of Squares	Mean Square	F- ratio	P- Value
Model	3	139.95	46.65	11.85	0.0009
A- Pulse on-time	1	28.12	28.12	7.14	0.0217
B- Pulse off-time	1	106.95	106.95	27.17	0.0003
C-Servo feed	1	4.88	4.88	1.24	0.2891

 TABLE 21

 R-Squared Values (Surface Roughness Values)

STD. DEV.	0.21	R-SQUARED	0.8430
MEAN	2.55	Adj R-Squared	0.8002
C.V. %	8.25	Pred R-Squared	0.6817
PRESS	0.98	ADEQ PRECISION	14.555

Source	Degrees of freedom	Sum of Squares	Mean Square	F-ratio	P-Value	
Model	3	136.68	45.56	19.69	0.0002	
A-Pulse on-time	1	134.07	134.07	49.12	0.0001	
B-Pulse off-time	1	0.66	0.66	0.24	0.6323	
C-Servo feed	1	1.95	1.95	0.71	0.4160	

TABLE 23 R-Squared Values (Material Removal Rate)

Std. Dev.	1.65	R-Squared	0.8199
Mean	47.11	Adj R-Squared	0.7708
C.V. %	3.51	Pred R-Squared	0.6227
PRESS	62.89	Adeq Precision	10.754

6 CONCLUSION

In the research work, a newly formulated composites (Al-Al₂O₃) is prepared by the stir casting process. In this stir casting method of casting Al 6063 plate is casted with varying mass of Al₂O₃ (3%, 6%, 9%). Also the distribution of Alumina and Aluminium is examined by microstructure analysis, hardness distribution and the material is tested for its mechanical properties such as tensile strength and hardness.

1. The results confirmed that stir casted Al alloy 6063 with Al_2O_3 reinforced composite is clearly superior to base alloy Al6063 in the comparison of tensile strength as well as hardness.

2. Tensile strength of Al composite was improved by the addition of the Al_2O_3 particles.

3. The Percentage elongation of the composite decreased with increase in Al_2O_3 content, which confirms that alumina addition increases brittleness.

4. Increasing of hardness with increasing weight percentage of Al₂O₃ particles is mainly due to grain refinement and particle strengthening effects.

5. We found that with respect to decrease in pulse on-time, and weight percentage of alumina the kerf decreased

6. With respect to increase in pulse off-time and weight percentage of alumina surface roughness decreased with increase in surface integrity (Surface finish and texture)

REFERENCES

- B.Bobic, S.Mitrovic, M.Babic, I.Bobic"Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate", *Tribology in industry*, Volume 32, No. 1, (2010)
- [2] Vijaya Kumar Bhanot, Dharminder Singh, "Research work on Composite Epoxy Matrix & Ep Polyester reinforced material", *International Journal of Engineering Research & Technology*, Vol.2, No.1,(2013)
- [3]T. P. Rajan, R. M. Pillai and B. C. Pai, "Review Rein-forcement Coatings and Interfaces in Aluminium Metal Matrix Composites," *Journal Material Science*, Vol. 33, No. 14, pp. 3491-3503, (1998)
- [4] Mohd Dan.ish, Dr.M.Arif Siddique, "Microstructural & Morphological Evolutions of Al-Al2O3 Powder Composite during Ball Milling", *International Journal of Engineering Research & Technology*, Vol.1, No.10,(2012)

NESS)					
Source	DEGREES OF FREEDOM	Sum of Squares	Mean Square	F-ratio	P-VALUE
Model	3	2.60	0.87	19.69	0.0001
A- Pulse on-time	1	1.73	1.73	39.35	0.0001
B- Pulse OFF- TIME	1	0.84	0.84	18.98	0.0011
C- Servo FEED	1	0.032	0.032	0.73	0.4105

TABLE 20 ANNOVA TABLE FOR THE FITTED MODELS: (SURFACE ROUGH-NESS)

[5] Sanjay Kumar Majhi, M. K. Pradhan, Hargovind Soni, "Optimization of EDM Parameters Using Integrated Approach of RSM, Gray And Entropy Method", International Journal of Applied Research in Mechanical Engineering (JJARME) ISSN: 2231 –5950, Volume-3, Issue-1, 2013]

[6] Lloyd D.J., "The solidification Microstructure of Particular Reinforcement Al/SiCComposite", *Scie. Technology*, 35:59,(1989)

[7] Long S, Befford O and Bonjour C., "Microstructure and Mechanical Properties of a High Volume Fraction Particle Reinforcement AlCu4MgAg Squeeze Casting", *Materials Science and Engineering*, No.269: 175-185,(1999)